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Abstract-Application of the strain energy density failure criterion is made to plane notch problems, where
the crack now becomes a special case of a more generalized approach to failure. The specific case considered
is that of the plane elliptical cavity under remote tension and compression. Both failure loads and fracture
trajectories are discussed. It is shown that an additional characteristic dimension provides satisfactory
agreement of the theory with available data. Finally, known characteristics of fracture trajectories from a
notch tip are shown to be predicted for unstable fracture conditions,

1. INTRODUCTION

The energy density fracture criterion proposed by Sih [1] to predict the failure of elastic solids
with cracks is extended to include blunted notches. Since the line crack solution can be recovered
as a special case of the blunt notch solution, no special consideration in the prediction of failure is
required. Hence, the concept of fracture toughness can be applied to materials containing cracks
as well as notches.

Failure criteria applied at the surface of a notch have not been able to explain the failure of
notches satisfactorily. This resulted in the development of theories incorporating additional
parameters in order to obtain a better description of the geometry effects. Noteworthy are the
formulas derived by Neuber[2].

The difficulty was observed by Griffith [3,4] to be caused by the presence of microcracks. or
flaws, at the surface (of silica glass) resulting in a non-continuum surface.

The weakness of brittle materials can be generally attributed to the non-uniform distribution
of internal and/or surface flaws. These flaws are inherent in many engineering materials and they
also must persist around the edge of a blunt notch. Hence, a failure criterion such as the
maximum surface tangential stress may not be able to predict the loads that may be safely
applied. Although any theory that attempts to include the surface irregularities would be
overwhelmingly complicated, the importance of the surface effect cannot be underestimated,
One of the basic assumptions in applying the strain energy density criterion is that the interior
must be loaded very nearly to failure in order for a surface initiated fracture to become unstable
and propagate through the material. Moreover, while these surface flaws may locally invalidate
the continuum solution. the solution remains satisfactory in the bulk of the material.

With these underlying premises, the criterion of strain energy density will be applied to the
bulk of the material near the notch surface. Basically. the criterion states that particular
stationary values of the strain energy density, as seen from the crack tip dictate the direction and
magnitude of the load required for crack extension. As originally proposed by Sih [I], the theory
employed the first term expansion of the stresses and strains near the (line) crack tip, Here. the
theory is extended to employ the total strain energy density near the notch tip, and the point of
reference is chosen to be the location on the surface of the notch where the maximum tangential
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stress occurs, since it is expected that from this point, fracture will proceed, although, as stated
earlier, failure loads based on this stress are not satisfactory.

Although the symmetric loading cases have received primary consideration, it is now
recognized that a knowledge of mixed mode loading is necessary. Earlier data of Erdogan and
Sih[5], Cotterell[6] and Williams and Ewing[7] is intended to extend this understanding.

The present considerations are meant to add some theoretical substance to the mixed mode
problems. Although in design the symmetric case is usually the weakest case, there do occur
non-symmetric configurations where knowledge of the crack path is important.

2. LOCAL BEHAVIOR OF THE STRAIN ENERGY DENSITY FUNCTION

The location on the (free) surface of high tension, or tensile stress, may be postulated to be the
region of initial failure of the notch. Subsequent behavior, such as the immediate post-failure
crack direction, may in part be described by the local features of the strain energy density
function. A radius vector, r, (Fig. l) is attached to the point of initial surface failure: the vector is
of length r, and its position relative to a fixed axis is given by the angle 8, measured positive
counterclockwise. The origin of the vector is a function of both loading and notch geometry.
Further, for each notch and loading geometry, there is usually a separate origin for the tension
and compression cases.

In order to utilize the strain energy density function as a failure criterion, it is necessary to
have at least a qualitative view of the nature of its behavior around a notch tip. Presuming
temporarily that the structure containing the notch is only slightly loaded and that the material
near the notch is perfectly elastic, contours of constant strain energy density generated by the
presence of the notch would qualitatively appear as shown in Fig. 2: the inner contours are those
of higher density, and the outer ones of lower density. The contours are emanating roughly from
the location of the maximum surface tangential stress. Attached to this location is the radius
vector r. Figure 2 also indicates that were r fixed, and 8 permitted to vary, the resulting circular

Notch Surface
e

Fig. 1. Components of the radius vecl r r.

Fig. 2. Radius vector locus intersecting strain energy density contours.
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locus intersects varying strength contours of strain energy density, and, it is expected that for a
given magnitude of the radius, several stationary values of the strain energy will be acquired at
discrete values of the angular parameter. In terms of the angle 8, the variation in strain energy
density encountered by the constant magnitude radius vector is illustrated by the curve in Fig. 3.
It is observed that, in general, more than one stationary value is observed: a minimum at A,
maxima at Band C; the actual number depends upon the material and geometry involved. In
accordance with the theory as advanced by Sih [1], the minimum at A may be associated with the
load for failure, which is determined from the critical material value of the strain energy density,
and is dependent upon the specific radius chosen. Specific choice of the appropriate value of r, ro,
requires experimental data for a given material: it is expected that ro so chosen will be a constant
for the material, and hence, knowledge of failure loads for one geometry may easily be used to
determine failure loads for other geometries.

In addition to determining failure loads, it does not seem unreasonable to assert that the initial
notch and loading geometries (and material properties) may determine not only the load required
to precipitate fracture and the initial fracture angle, but also the subsequent path the fracture will
follow. That is, upon being loaded, the notch must seek a path of release, through knowledge of
the local properties of the strained material, seen from its present configuration. Once loading is
initiated, it should be immediately clear from the geometry on exactly what path the fracture will
proceed, leaving as the only undetermined factor that of fulfilling the actual initiation of the
fracture. There are, however, many configurations for which crack growth is [globally] stable;
one in particular involves the loading of a punch resting on a glass block [8]. As the load is
increased, the crack grows a corresponding amount, stops, and remains stationary until a further
load increase occurs. Under such conditions, long range path predictions would not be possible.
In the configurations where local and global instability occur simultaneously, such as notches
loaded uniformly at distances far from the notch, crack growth is quite sudden and unstablet.
Then the material has no time to readjust to a new configuration, and as suggested above, quite
possibly, at least the initial fracture path is predetermined. The argument in favor of such
behavior comes from an understanding of the global energy field: in brittle materials, for blunt
notches, or line cracks at low angles of loading, the loads required for initial fracture are
relatively high (when compared to that of the line crack in symmetric loading) so that there
already exists a high density energy in the regions at both near and far distances from the point of
incipient failure. Such a field will do much to contribute to rapid fracture and failure, when few
available physical resources exist to inhibit the fracture from propagating.
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Fig. 3. Variation of strain energy density, for constant magnitude radius vector, as function of angular
parameter.

tThis is consistent with the physical phenomenon of buckling: if the buckling is unstable, then the post-buckling behavior
is predetermined.
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In order to determine a path for the fracture, the family of curves generated for a wide range
of radius vectors provides the locations of the sequence of points that indicated stationary values
of the strain energy function. It is here suggested that this trajectory should be in close agreement
with the actual fracture path taken from a notch on a brittle material. Under these circumstances,
it is evident that the maximum tangential stress requires a reference point for the angular
variation that follows the path of fracture, whereas the strain energy methods described may
observe the whole field from one vantage point-that at the notch surface. This is a consequence
of the local orientation invariance of the strain energy density. Subsequent discussion of a
specific example will bear out the expected accuracy of the path prediction capabilities.

In plane problems, the general form of the strain energy density function is given by

dW I 2 2 2
dA = 16J.L [(1 + K )(UII +Un) - 2(3 - K )UIIUn +Sud (1)

where K is defined to be 3 - 4v for plane strain and (3 - v)/(1 + v) for plane stress, and J.L is the
shear modulus. The approach of Sih[l] has been to substitute the first term of the asymptotic
expansions for the stresses into (1) to obtain

(2)

where S is a function of the stress intensity factors and the angular parameter 8. For a fixed
distance ro, one may then use

(3)

so that S assumes some critical value, Sc" which characterizes the toughness of the material.
In the present considerations, the exact stresses are substituted into (1), and the radius, r, may

no longer be factored from the expression. However, from (3), it is seen that specifying SO' to be
a constant is equivalent to requiring that (dWIdA )cr be a constant; then numerical procedures
may be employed to determine critical loads once the value of ro has been chosen, and the
stresses for a given geometry are substituted into (1). Since r specifically may not be zero.
geometric singularities will no longer require special consideration.

It should be noted that some of the results subsequently described differ little with those
found by the maximum tangential stress theory; the strain energy density theory is expected to
hold not only for these conditions, but a much wider range of physical situations as well, i.e. not
discrediting the former, but providing a more consistent framework for the prediction of material
failure [16].

3. THE PLANE ELLIPTICAL CAVITY-FAILURE LOADS

The elliptical cavity (in two dimensions-plane strain) is defined by the ratio of minor to major
axis half-lengths, bIa, with all other length parameters normalized with respect to the major axis
half-length, a. The uniform loading (at infinity) forms an angle of {3 with the major axis of the
cavity, and the angle 8 used in the radius vector r is measured positive counterclockwise,
referenced to an axis parallel to the major axis of the cavity. At any given point on the surface of
the cavity, the normal angle to the surface forms an angle cf> with the major axis, and also is
measured positive counterclockwise. Figure 4 indicates the geometry described. Only the right
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Fig. 4. Geometry and parameters of elliptical cavity and radius vector.

hand notch tip will be considered, as antisymmetry of the geometry implicitly allows description
of the other notch tip as well.

The stresses for this geometry are well known, and in this case, those given by
Muskhelishvili [9] were used. The strain energy density function for the cavity is obtained by
substitution of the given stresses into equation (1). Both this and the acquisition of stationary
values were performed numerically. Poisson's ratio was arbitrarily chosen to be 0,25, except
where noted for specific data comparison. It is clear from the work of Sih[l] that there are
significant variations attributable to Poisson's ratio change, and this will not be further illustrated.

The origin of the radius vector r is taken at the location along the boundary of the maximum
tangential tensile stress. For the elliptical cavity, this position may be analytically determined to
be

t _ bra sin2 f3 - b cos2 f3 ± Va 2 sin2 f3 +b2 cos2 f3]
an 1J - a(a +b) sin f3 cos f3 . (4)

Two values of the eccentric angle 1J are obtained: the positive root provides the origin for
compressive loading, and the negative root for tensile loading, (Fig. 5).

(a) The case of tension
As noted, the eccentric angle 1J that locates the origin of r is the negative root given by (4).

Figures 6-8 indicate the variation in stationary values (minima) acquired for specific values of

(0) Compression (b) TenSion

Fig. 5. Location of points of initial failure in tension and compression.
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Fig. 6. Variation of load with crack angle: line crack; (tension).
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Fig.8. Variationofload with crackangle: bfa =0·1; (tension).

b!a, loading angle f3, and radius r. For any particular combination of values, the angle (J is varied
until the minimum is determined; at this value of 8, the corresponding load is obtained, and
plotted in the following figures. It may be observed that in an cases the minimum load required
for fracture occurs in the normal loading case (f3 == 90°). Intuitively, one would expect such a
result, although other fracture criteria have been proposed in which the minimum load appears in
the vicinity of f3 == 70°. Palaniswamy[10] attempted an energy release rate procedure for complex
loading, in which a small extension to the main crack was varied in direction until the maximum
strain energy release rate for small crack extension was determined; in this case, a minimum was
located near 72°. A second case in which the minimum load appears near f3 == 70° occurs in the
criterion of maximum tangential stress near the crack tip. Unmentioned in the original paper on
the inclined loading of a crack by Erdogan and Sih[5], Williams and Ewing[7] pointed out this
effect in the loading response. This latter work included an attempt to avoid the local material
behavior by applying the criterion a short distance from the crack tip using an additional term in
the asymptotic solution. Unfortunately, the truncation errors in the results overemphasize the
minimum load, manifest when compared to the exact solution (Sih and Kipp[ll]). (In this
reference, the strain energy density theory is shown to agree very well with the tensile data of
Williams and Ewing[7], and will not be reproduced here). At f3 == 0°, a material with a line crack
behaves as if no flaw were present, but where the crack is blunted, finite loads to failure will
occur: these loads occur off-axis in Figs. 7 and 8, and are non zero in general for b!a > O.

Figures 6-8 also reflect the trend of the increased loading permitted as the notch tip becomes
more blunted. If an elliptical cavity is experimentally loaded to failure at several crack angles,
then from the corresponding family of curves for the same size notch, the curve that matches the
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data may be extracted, and that choice will provide the characteristic dimension, ro, assuming
that the elastic strain energy density constant is known. A knowledge of these two parameters
has been earlier postulated to be sufficient to describe the failure of this material in the presence
of any geometric configuration, whether line crack or notch. In the case at hand, given ro, a family
of curves may now be established that indicates the change in loading patterns as the geometry
changes. For example, should rofa = 0,01, then for various values of bfa, the variation in loading
appears as in Fig. 9. The value of the angled crack problem should now be more clearly seen: the
failure criterion is based not on a single load to failure, but a function, and while more difficult to
obtain, in principle, the prediction reliability should be considerably greater than presently is the
case.

(b) The case of compression
Although much of the behavior to be described in this section corresponds to that of the

tensile case, there are a few additional difficulties that must be dealt with in compression. Rather
than reiterating the arguments already presented in detail, emphasis will be placed upon the
features that tend to complicate the compressive analysis. Were the analysis confined to simply
reversing the applied loads in the last section and proceeding as before, there would be no
trouble. But immediately, caution must be exercised in requiring that no interpenetration of notch
faces occurs. The line crack, for instance, must be reformulated to ensure that sufficient normal
stresses occur on the faces to prevent penetration, and this has been attempted by McClintock
and Walsh[12]. In addition, it is clear that functional stresses will be developed on the faces if any
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Fig.9. Variation ofload with geometry for fixed core dimension: ,.fa = 0·01; (tension).
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slip is to occur to allow fracture to progress. In the development here, the notch geometry will be
restricted to such dimensions that contact between opposing faces cannot occur.

The geometry of the ellipse is such that in compression, the maximum surface tangential
stress that may develop is equal in magnitude to little more than the applied compressive load,
and elsewhere, tremendous crushing pressures may be developed. The consequence is that some
kind of material damage is inevitable, although it does occur at locations away from where a
fracture is expected to initiate and grow. A combination of these factors results in a weaker
model for fracture prediction than that of the tension case, although limited agreement with
experimental data does occur.

As before, assuming a small applied uniform stress, the surface position of maximum energy
(maximum surface tengential stress) may be located, and an origin established to evaluate the
load behavior as a function of radial distance from the surface. Figures 10 and 11 describe the
load behavior as a function of notch angle, for various constant radii, rIa.

Once a characteristic dimension has been established, say rola = 0,01, the variation in load
with geometry may be described, as in Fig. 12. For a given material, and the present analysis, it is
expected that a value of rola, must be determined, since in general, the behavior of a material in
compression differs considerably from that in tension. That is to say, another sequence of tests
would be required to obtain the dimension, ro, and in a general analysis, one necessarily would
need to know the expected geometry and loading conditions before deciding upon the critical
parameters involved in load prediction.

A characteristic of compressive loading is the minimum load to fracture occurrence in the
non-symmetric case. The families of curves plotted indicate a wide range of failure loads over the
various values of f3 from zero to normal, but experimentally, there exists much less variation.
Cotterell [6] has published the experimental data that appear in Fig. I3 for an elliptical cavity,
b1a =0,1, in glass. The curves in this figure are those of Fig. 11, normalized to the load at f3 = 90°.
The curve rIa = 0 is that of the maximum tangential stress criterion. As the position of failure
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Fig. 10. Variation of load with crack angle: b/a = 0·01; (compression).
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Fig. 13. Variation ofload with crack angle: bIa =0·1; data from Cotterell (1972); (compression).

criterion is moved into the material, there appears quite satisfactory agreement between
rIa = 0·005 and 0·008. Hence the energy criterion may be expected to provide reasonable failure
predictions. On the basis of the data, one could choose a critical dimension of, say, rola =0,005,
and then use this dimension as set forth in previous sections for load predictions for other
geometries in this material.

4. THE PLANE ELLIPTICAL CA VITY-FRACTURE TRAJECTORIES

Although interest from a safety standpoint centers on loading capacity, and more specifically,
on the worst case if possible, the actual post-failure behavior of the fracture provides another
insight into the validity of the theory under study. As briefly mentioned earlier, Griffith had
suggested that a crack would extend in a direction normal to the maximum tangential stress, and
Erdogan and Sih [5], in applying this criterion obtained striking agreement with their experimental
data. In a discussion of this paper, McClintock [13] suggested the use of the normal angle from the
ellipse surface as the directional property, but the result was not in the slightest agreement with
the observed behavior. The published data of Williams and Ewing [7] for initial crack angle (with
respect to the plane of the crack) corroborates that of Erdogan and Sih. In tension, at f3 = 90°, the
crack is expected to propagate in its own plane, but as f3 becomes small, the direction becomes
less well defined. At f3 = 0, the material reacts as if (in theory) no crack at all were present, and
while the material would be expected to break at a normal to the load, the crack solution cannot
predict this. Before proceeding further, it is necessary to be more precise in stating how the crack
will extend from the tip of the crack or notch. When the stationary values of the strain energy
density were determined for various radius vectors, in addition to the load, an angle 8 was found
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corresponding to the load. So for each radius rIa, a curve is generated in the angle (J; Figures
14-16 reflect this angle for the same ratios of bIa and rIa as used for the load variations of Figs.
6-8. Once the parameter rola has been established from loading considerations, the angle of
fracture, (Jo, is determined from the assumption that there is separation of the material from the
surface in the direction (Jo, with subsequent fracture proceeding from there. If rola is taken to be
0,01, corresponding to the load example, then for varying ratios of bIa, the resulting alterations in
initial fracture angle would appear as in Fig. 17.
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Fig. 14. Variation offracture angle with crack angle: line crack; (tension).

CD

uo
L
li-

D

1::
~ 30'
5'
L

!l.

rla= 0.05

0.005
0·001

0.0005

b/o=0.01

, = 0·25

0' l--,--~--,--~"':::;===--===-....;:;IL.::-
0' 30' 60' 90'

Crack An gle 13

Fig. 15. Variationoffractureanglewithcrackangle: bla '" 0·01; (tension).



The strain energy density failure criterion 165

bla =0·1
• : 0.25

(]),
ClJ 60'
0>c«
ClJ
L
:J

+-'
U
0
L

30'u-

"0
ClJ
+-'
u
ClJ
0'
L
a-

a'
0'

r/a=0.1

0.06

0.04

0.03

0.02

0.0

0.001
0.01

0.009

0.003

0.007

0.005

30'

Crack Angle (3

Fig. 16. Variationoffracture angle with crack angle: bla = 0·1; (tension).

r,/a:0.01
)i : 0·25

a' L::--l:~ ......._.....,..--,-_........_......".--,,----,--=~
0' 30'

Crack Angle

90'

Fig. 17. Variation of fracture angle with crack angle for fixed core dimension: rola = 0·01; (tension).

One must remain cognizant of the non-stationary position of fracture initiation along the
notch surface. As the loading angle changes, so does the position of initial failure. One result is
that now, when {3 = 0, there is a well defined point of failure (because the geometry is now
nontrivial), and it is to be expected that the fracture will extend from the minor edge of the cavity
along the minor axis direction. The path is, of course, perpendicular to the load, and the behavior,
apart from load magnitude, corresponds exactly to that from the major axis notch tip at {3 = 90°.

Cotterell [14] has observed that for notches, rather than immediately turning into a path of
fracture coinciding with that of the line crack, the fracture trajectory extends forward from the
notch tip, roughly in the same plane, for a distance of approximately one notch tip radius, before
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turning into the path direction matching that for the line crack. (The ideal line crack has, of
course, no tip radius, and would immediately assume its characteristic direction of failure). If it is
assumed that the crack path is predetermined for initially brittle materials in unstable
configurations, then the radius vector r = r(8) should trace out the trajectory along which
fracture is expected to occur. In effect, the trajectory will follow a path that restores symmetry to
the geometry of fracture.

For a line crack in tension, Fig. 18 illustrates the projected path for several angles of
loading. Photographst of actual crack trajectories are shown in Figs. 19(a), 19(b), and 19(c), for
angles of loading {3 = 30°, 4SO, and 60°, respectively. Attached to each photograph is a trace of the
mathematically predicted path, for a crack of the size shown in the photograph. The agreement is
observed to be very good for the cases included, out to a distance of at least onehalf crack length.

If the behavior of a rather blunt notch, say bIa = 0,1, is examined, an overall view (Fig. 20)
suggests that there have been at least some local changes in behavior from that of the line crack.
Upon close observation, the trajectories near the surface reveal a behavior that connects some
previously advanced, but analytically unsupported, ideas. When the surface of the notch
separates, the fracture begins its course tangentially to the normal angle at the surface; i.e. initial
fracture is perpendicular to the surface, coinciding with McClintock's [13] hypothesis. But this is
only a local tangent, for the path then bends sharply towards the horizontal (with respect to the
major axis of the notch), and extends in this way for a short distance. Again, a sharp turn occurs,
now into a direction whose tangent matches that for the initial fracture angle of the line crack.
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Fig. 18. Projected fracture trajectories: line crack; (tension).

tAppreciation for these photographs is expressed to Dr. T. T. Wang, Bell Telephone Laboratories, Murray Hill, New
Jersey.
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The short extension distance is approximately equal to the notch tip radius, in accordance with
the observations of Cotterell [14]. Subsequent to turning onto the path of fracture coinciding with
that of the line crack, the trajectory continues in much the same manner as that of the line crack.

These latter observations have been made assuming prevailing linear elastic response both
locally and globally. Should there be extensive localized inhomogeneity, or unaccountable grain
size effects, it is expected that few of the above phenomena will be observable, and a more
refined model must be created to determine the local behavior. Also, if the fracture is slow, then
the material has time to react to the new geometry, and the details listed above are no longer
valid.

Under uniform loads, it has been observed that propagating tensile cracks tend to restore
symmetry by running normal to tensile loads, and parallel to compressive loads. It is expected
that for the elliptical cavity under compression, for loads parallel to the major axis, and extend
along that same axis towards the applied load, while for loads parallel to the minor axis, fracture
will initiate at the surface intersection with the minor axis, and again extend towards the applied
load; i.e. for {3 = 0°, 80 = 0° and for {3 = 90°, 80 = 90°. Between these two limiting cases, the
behavior is determined as in the tensile loading case: the stationary values of 8 are plotted as
functions of crack angle {3, for various magnitudes of r (Figs. 21 and 22). It must be emphasized
that not until a specific dimension ro has been obtained can any of these curves represent the
initial fracture angle. If, for example, rola = 0,01, then the initial fracture angle, as it varies with
geometry, is given by Fig. 23. The data shown in Fig. 24 is from Cotterell [6] for elliptical cavities
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in glass plates loaded in compression. The curves are those from Fig. 22, since the data is {or
cavities of ratio bIa = 0·1.

The lower curves presented in Fig. 24 are for small values of rIa. The upper curve represents
the tangent angle taken from the plots in Figs. 25 and 26, of the crack trajectory after it makes the
sharp turn into its final path.

In general, the loads required to cause failure in compression are substantially higher than
those in tension, and there results throughout the member severely strained material, so that
there is a high energy density prevailingt. The locus of stationary values, r, may be plotted to
attempt to predict the subsequent path taken by the fracture (Figs. 25 and 26). As in the tension
case, the path is initially tangent to the local normal before bending away; then there is a quick
return into the general trend leading the path towards the uniform load. This describes the
behavior for most of the angles of loading; apparently, as f3 increases, so does the length of the
initial trajectory before its final turn into the load. This is also evident by following changes in rIa
for constant f3 in Figs. 21 and 22.

In view of the trajectories in both tension and compression, especially the local changes that
occur when blunting is present, a vital piece of information to be given with the initial fracture
angles is the location of measurement. In part, this is the missing factor in the curves of Fig. 24,
since it is really now known where the tangent was taken to obtain the fracture angles. In general,
the theory as presented requires this additional length parameter to correlate experimental and
theoretical behavior more accurately.

Fig. 24. Variation of fracture angle with crack angle: bIa = 0'1; data from Cotterell [6] ;(compression).

tThe results are expected to hold for final catastrophic failure. but not to account for preliminary damage that accures on
the notch surface.
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5. CONCLUDING REMARKS

The aim of this approach to a more unified theory of cracks and notches is to obtain a fracture
toughness parameter that may be generally applied; i.e. a true material constant.

It is now evident that at the stationary values of the strain energy density obtained, the
division of the strain energy into dilatational and distortional parts provides a deeper
understanding of the mechanism of fracture[15]. This suggests the possibility of extending the
analyses to ductile materials, where directly in front of the crack tip there is little or no plastic
deformation. Hence, the same fracture toughness criterion can be applied to this elastic region
once the yielded regions have been obtained.
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